THE HIERARCHY OF CONTROLS

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
<th>Control</th>
<th>Control</th>
<th>Control</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Effective</td>
<td>Personal Protection Equipment</td>
<td>Engineering Controls</td>
<td>Administrative Controls</td>
<td>Technical Specifications</td>
<td>Substitution</td>
</tr>
<tr>
<td>Least Effective</td>
<td>Personal Protective Equipment</td>
<td>Engineering Controls</td>
<td>Administrative Controls</td>
<td>Technical Specifications</td>
<td>Substitution</td>
</tr>
</tbody>
</table>

THE RISK

An incapacitated competitor submerges in the water and is unable to be located and required quickly to receive timely medical attention.

PPE MITIGATION – LIFEJACKETS AND SURF HELMETS

“I recommend SLSA collaborate with the designers of such devices with a view to making the wearing of them compulsory once the organisation is satisfied they are suitable. Consideration should also be given to the use of helmets by competitors in surf craft events.”

State Coroner Barnes
Saxon Bird Inquest, 2011

COLLABORATION WITH EXPERTS

STAGE ONE: L50 LIFEJACKETS

While duck diving in Level 50 Lifejackets, the increased rates of exertion experienced by the individuals were considered excessive.

It was hypothesised that decreasing the buoyancy level (or resistance) would also decrease the rate of exertion.

This led to further testing.
STAGE TWO: LOW BUOYANCY LIFEJACKETS

SLSA determined that it needed to undertake further testing investigating low buoyancy lifejackets.

The revised objectives aimed to determine:
1. The minimum buoyancy required to achieve positive freeboard.
2. The maximum buoyancy required to reduce impact on rates of perceived exertion while completing the duck diving test to a reasonably acceptable level.

THE KEY OUTCOME

SLSA Buoyancy Range

AS4758.1:2015 as modified Table 3A: Buoyancy Range for SLSA Low Buoyancy Lifejackets (Level 25)

<table>
<thead>
<tr>
<th>Life Jacket Level</th>
<th>Minimum Buoyancy, N</th>
<th>Maximum Buoyancy, N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 25</td>
<td>>20N +6N</td>
<td>25N +8N</td>
</tr>
<tr>
<td>Child Weight Ranges, kg</td>
<td>Adult Weight Ranges, kg</td>
<td></td>
</tr>
<tr>
<td>>10 to 25</td>
<td>>40 to 50</td>
<td>>80 to 100</td>
</tr>
<tr>
<td>>12 to 25</td>
<td>>50 to 50</td>
<td>>120 to 150</td>
</tr>
<tr>
<td>>22 to 40</td>
<td>>60 to 70</td>
<td>>150 to 200</td>
</tr>
</tbody>
</table>

FIT FOR PURPOSE DESIGN

CERTIFICATION

SLSA-LJ25:2015
AS4758.1:2015 Level 25
Lic: SLS10000
SAI Global
IMPLEMENTATION PLAN

1. Surf Hazard Rating Project
2. PPE Testing under Heightened Risk
3. Engagement Opportunities with Members
4. Policies, Procedures, Rules & Tools

THANK YOU

Enquiries can be made to:
Barbara Brighton
Research Coordinator
Surf Life Saving Australia
E: bbrighton@slsa.asn.au
P: +61 02 9215 8343