Biological control of Prickly acacia: Progress and issues

J. Callander
N. Kumaran
D. Taylor
K. Dhileepan

Background

- Vachellia nilotica ssp. indica
 - Acacia nilotica ssp. indica
 - From Indian subcontinent
 - For shade and fodder
 - Weed of National Significance

• Many management options
 - Most not economical
• Approved biocontrol target
 - Biocontrol efforts since 1980
• Biocontrol – most viable option
 - 6 agents introduced
 - 2 agents established

Agents from India

- Anomalococcus indicus
 - Babul scale
 - Testing near completion
- Phycita sp. B
 - Green leaf-webber
 - Testing in progress
- Dereodus denticollis
 - Leaf-feeding weevil
 - Testing to commence

Babul scale

• Host testing in Australia
 - No-choice tests
 - 71 non-target plant species tested
 - Development completed on 15 species
 - Only 4 species sustained development comparable to prickly acacia
 - Choice tests
 - Prickly acacia more preferred than non-target species

Babul scale

• Field trial in India
 - Choice test under field conditions
 - Trial 1: Acacia fabata, Vachellia rufa, Neptunia major and N. monosperma
 - Seeds exported to India
 - High mortality of test plants
 - Trial 2: N. major and prickly acacia
 - Localised flooding disrupted one site
 - Preliminary results: 77 prickly acacia & 0/7 N. major plants infested with babul scale
Green leaf-webber

- Host testing in Australia
 - No-choice feeding assay
 - 19 non-target plant species tested
 - Development completed on 10 species
 - Oviposition no-choice tests
 - 10 non-target plant species tested
 - Egg lay only on *N. major*
 - Oviposition choice test
 - Prickly acacia and *N. major*
 - Egg lay only on prickly acacia

Issues

- Colony crashes (Feb & May 2015)
- Inconsistent egg lay
 - Dec 2014 – 2 out of 6 cages
 - January 2015 – 1 out of 6 cages
 - February 2015 – 0 out of 3 cages
 - May 2015 – 0 out 3 cages
- Female moths were not reproductively mature
- No spermatophores present – moths had not mated

Progress

- Peak activity in India occurs during winter season (shorter day lengths)
- Manipulate day-length in quarantine
- New material imported August 2015
- Import new material October 2015

Leaf-feeding weevil

- Long lived adults
 - Been in culture since 2013
 - Adults feed on leaves
 - Larvae presumed to feed on roots or under bark?

Issues

- Virtually no egg lay in quarantine cages
- No survival of larvae

Biology in India

- Prickly acacia drought stressed during summer
- Peak egg lay occurs during monsoon season
- Combination of these two elements may be required to stimulate egg lay and larval development

Progress

- Oviposition chambers established
- Eggs laid in glass jars with cut foliage
 - Drying foliage may stimulate egg lay
 - Eggs laid in saturated floral foam
Leaf-feeding weevil

- **Progress**
 - Trialled various different food sources
 - Roots, stems, leaves
 - Semi-artificial diet (containing root powder)
 - Proposed trial of a completely synthetic artificial diet

Future agents - Ethiopia

- **Gall thrips & mite galls**

Acknowledgements

- **Funding**
 - Meat & Livestock Australia
 - Rural Industries Research & Development Corporation
 - Queensland Government (War on Western Weeds Initiative)
- **Support**
 - A. Balu and M. Murugesan, Institute of Forest Genetics & Tree Breeding (India)
 - Stefan Nesser, Plant Protection Research Institute, South Africa